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ABSTRACT ’7

The effect of finite Larmor radius and Larmor frequency on
hydromagnetic waves in a plasma is investigated. It is concluded
that the finite Larmor radius has considerable influence. A uni-
form rotation is also included in view of its astrophysical

importance.
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INTRODUCTION

The purpose of the present paper is to investigate the effect of
finite ion Larmor radius on the hydromagnetic wave propagation in a
plasma. The well-known results regarding Alfven waves were obtained by
using idealized hydromagnetic equations which are, strictly speaking,
valid only in the limit that thelarmor radii of the charged particles
(electrons and protons) are effectively zero and the corresponding
Larmor frequencies regarded as infinitely large. In many astrophysical
situations like the Solar Corona, interplanetary and interstellar
plasmas, it is known that the approximation (zero Larmor radius and
infinite Larmor frequency) is not valid. It is, therefore, interesting
to study the modifications in the hydromagnetic wave propagation if
one relaxes the above mentioned approximation. It may be mentioned
that Rosenblut.het.al.1 have found, in connection with the gravitational
instability of a magnetized plasma, that the 'flute' instability is
reasonably suppressed by finite Larmor radius effects, particularly for
small wave~length perturbations propagating normal to the ambient
magnetic field. Their approach is based on the collisionless Beltzmann
equation. Roberts and Taylor2 and more recently Rosenblwth and Simon3
have shown how equivalent results can be obtained using hydromagnetic
equations modified to take account of the finite ion Larmor radius.
These investigations are, however, restricted to low P» plasmas so that
the prevailing magnetic field does not change during the course of
perturbations. The velocity vector was also confined to a plane
normal to the ambient magnetic field. Hydromagnetic wave propagation
is, therefore, not included in their investigations in view of the

above mentioned restrictions.



BASIC EQUATIONS AND DISPERSION RELATION

Consider a homogenous, unbounded, collisional plasma having Ng elec-
trons per c.c. and an equal number of protons. The electron and ion
temperatures are assumed equal, and the plasma, in the absence of a
prevailing magnetic field, is characterized by an isotropic pressure

?o (=;_N°kT) , K being the Boltzmann constant and T, the tempera-
ture of the medium. The plasma pressure is rendered anisotropic owing
to the ambient magnetic field, and the anisotropicity is determined by
the Larmor frequency, the Larmor radius, and the macroscopic velocity
gradients. As the initial state under consideration is static (or
partaking in a uniform rotation (§3 )), the plasma pressure is aniso-
tropic only in the perturbed state of plasma. Again we may regard the
electron pressure to retain isotropic character even during perturbation,
on account of the negligible electron Larmor radius compared to the ion
Larmor radius. We will regard the plasma to be non-heat conducting and
having an isotropic electric conductivity 5. It may be remarked that
the heat conduction would arise only in the perturbed state as the
initial configuration is devoid of temperature gradients and electric
field. Even during perturbation heat flow can be reasonably neglected
as one can show easily that the various coefficients of the heat flow
vector (Bernstein and Trehan4 equation IT - (71)) are very much smaller
compared to the electrical conductivity of the medium.

The basic equations are written as,
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Here g&:MN) , FQ’-‘- h"\'}’e) andl-’; denote the material density,

and the scalar and tensorial part of the plasma pressure respectively.
Equation (7) is the usual adiabatic equation of state with ¥ = 573
as modified to take account of a net electric field and the tensorial

pressure in the plasma. The final equation (8) is the 'generalized

Ohm's law' without the electron inertia term —-Y_’};l é.a , which is
Ne* dt<

left out as being negligible because we are dealing with frequencies
well below the plasma frequency. It may be noted that in view of the
unperturbed state being devoid of currents and velocity, the last two
terms on the right side of equation (7) can be omitted in a linearized
analysis under investigation, as being of second order of smallness.
Taking the ambient uniform field Bo along the x-axis and assuming

the perturbations to vary as exp. [-n‘t‘ +'lh x® +{\{3 %_A) , We may
w

write the perturbation equations as,

Gy = - T ~ (4T BTy ) (%)

(]

So‘“%& - ’Lk’}Sr _ Qh‘“’(} J\-Lh:, “33‘) + %—O{T “klh}—ih'jbx) (10)

/. L _b_o_.( b
Srvy = - W***%W*)+4“ ke (11)

= —{, v (12)




WSF = ”1}’0‘7“5.

cBo .
(o) - S 2P - B < B

cBo b2y Rk m
(:wf]\z)b Mmch . = BikMy

l, (b, k) = Bothate

(nen¥) b, 4Tw .

and

\,\'{ b( *tk ‘)j - O

Here (ux ,\L%’V\.?_) and CL’L)\)U)»5> denote the compoenents
of the perturbations W and h in velocity and magnetic field vectors
respectively. Sf‘ s SP denote perturbations in density and pressur e
and V) (: '/4-ﬂf> stands for the'magnetic viscosity' of the medium. The
equilibrium quantities are suffixed '0'. In writing equations (14)—-(16)
use has been made of equations (3), (6) and (8). The ion pressure tensor
components xx €tc. ion the equations (9)--(11) are written as,
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Here T denotes the ion - ion collision time and LO(: —el&o the

ion Larmor frequency.

Using equations (12), and (18)--(22) we may rewrite the equations

(9)--(11) as,
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Here S° is written for }%\P , (s being the sound speed for the medium).

We may now derive the dispersion relation by using equations (14)--(17)
and (23)--(25). After some simplifications we obtain the following

dispersion equation.
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The dispersion relation (26) is rather complicated for general discussion
including finite conductivity, finite Larmor radius and Hall current term.
We will, therefore, discuss some special cases for an infinitely conducting

plasma.

Perpendicular Propagation k&“ o, k? "k .

For propagation normal to the ambient magnetic%fgl&a

the dispersion relation gives,

2 P h,k . LY,
UP = k\lo“"s) *r 8()00)) - Q?fo (33)

where Up denotes the phase velocity ‘”/k.. The equation (33) represents

a damped, dispersivewmode. The phase velocity is effectively increased

by the ion-Larmor radius term involving h‘/fu) (: )le_"‘) , % being
0




the ion Larmor radius). The Hall current term, however, does not affect

the perpendicular node.

Parallel Propagation k"‘ = k ) k:’ =0 -

If the propagation is only confined along the di-
rection of the ambient magnetic field, the dispersion relation (26)

gives the following modes. We obtain a soundwode defined by,

* 3 )’ he
. R |>_ ke
S

This represents a sound mode damped due to mutual collisions and inde-

pendent of the following two modes described by,
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The phase velocities Up1, Up, for the twomodes, as measured in units
of Alfven speed Vo, are plotted in figures 1 and 2 against the parameter
(equation (36)) for a few values of the parameter § (equation (37)).
The values chosen for § are 0, 0.2, 0.4, 0.6, and 0.8 corresponding
to graphs (a)--(e). The parametersg and 'S are, as is clear'from
equations (36) and (37), measures respectively of the wave number of
perturbation and Larmor radius (or temperature for a given magnetic
field) in a plasma of specified number density of particles. We find
that the phase velocity of hydromagnetic wave propagation is con-
siderably modified due to finite values of ion Larmor radius and
frequency. There are now twowodes, instead of one, and they are dis-
persive in character. The phase velocity of onemode, corresponding
to positive sign in equation (35) is always more than the Alfven speed
(fig.1), and the increment is more for increase in Larmor radius (or
temperature for a fixed magnetic field) for a fixed wave number of
perturbation and vice versa. The otherwode (fig. 2) is characterized
by a phase speed which is less than the Alfven speed for large wave-
lengths and small Larmor radius (low temperature) but shows a minimum
value for a critical § for a given value of Larmor radius (parameterg ).
The critical wave number for minimum phase speed depends on the
characteristic value for the parameter § » but thereafter the phase

velocity again increases with increase in §
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2, EFFECT OF UNIFORM ROTATION

2!

We will now consider the effect of a uniform rotation é}_(;lk,gl.,o)
on hydromagnetic waves propagating along the ambient magnetic field in
a plasma having finite values of ion Larmor radius and Larmor frequency.
For simplicity we shall restrict to incompressible perturbations only.
In the presence of uniform rotation the equation (1) contains two addi-

tional terms on the right hand side, namely, the centripetal force

_g_(_l_x(.fl_,(,x—;) and the coriolis force 2§ Q\_/ac-Q—)
The equations (2)--(6) are unmodified except that VY.¥ —o . The
'generalized' Ohm's law should contain a term 2% (ﬁ'*fL) which
— (A*

is, however, neglected as being small in comparison to other terms.
Strictly speaking, there is an initial centripetal force which is left
unbalanced in the unperturbed state. We may, therefore, restrict to
small scale lengths in a slow}y rotating configuration so that the
centripetal force could be neglected. It may be remarked that the
cenbdpgax force does not affect the stability analysis as it remains
unperturbed. With the above mentioned modifications we can derive the
dispersion relation proceeding as in the non-rotating case. For
propagation parallel to the prevailing magnetic field in a dissipative

plasma, the dispersion relation is written as,

. 2 RV,
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where the symbols have the same meanings as in equation (26). 1t is

worth noting that the component of rotation vector normal to the ambient



magnetic field does not contribute, and the parallel component of rotation
vector appears along with the finite Larmor radius term. Thus the effect
of rotation is to effectively decrease the Larmor radius by an amount
depending upon the wave number of perturbation and the Larmor frequency.
The dispersion relation (38) reduces to that obtained by Lehnert6 for a
rotating plasma when the Hall current term and the Larmor radius terms

are left out.

For infinitely conducting plasma, the phase velocities of the hydro-
magnetic yhodes in a uniformly rotating medium are given by an equation
exactly similar to equation (35) except that the term kb, is re-

LA

k), ah, . .
placed by . everywhere in the equation. The curves

ET AR A
(a)--)&) in figures 1 and 2 show also the effect of rotation on hydro-
magnetic waves in a plasma with finite Larmor radius and the Hall current.
The curves for positive and negative values of 3 [— (i}orrespond

e |~ \augy,

respectively to the situation where the finite Larmor radius contri-

bution exceeds that due to uniform rotation and vice versa.
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Figure 1

Figure 2

CAPTIONS

The phase velocity Up; (in units of Alfven speed) is plotted

against §\= R«g—f) for various values of & = k pe. ad\% }}

3t

The phase velocity Upz (in units of Alfven speed) is plotted

against 5 (,; hi/)? for various values of & S’f[_ ({4\01,_,\’0

qwf, Vo KVo
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